استفاده از مدل جایگزین شبکه عصبی مصنوعی به‌منظور کاهش محاسبات شناسایی نشت در شبکه‌های آبرسانی

Authors

  • سعید سرکمریان دانشجوی دکترا، گروه مهندسی عمران، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران
  • سیدمحمد اشرفی گروه مهندسی عمران، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران.
  • علی حقیقی گروه مهندسی عمران، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران.
Abstract:

دست‌یابی به پارامترهای نشت در روش تحلیل معکوس جریان گذرا (ITA) به صورت معکوس و با حل یک مسئله برنامه‌ریزی غیرخطی توسط الگوریتم‌های فراکاوشی همچون الگوریتم ژنتیک (GA) انجام می‌شود. با وجود توانایی بالای روش ITA در یافتن پارامترهای نشت، استفاده از الگوریتم GA در این روش سبب می‌شود تا از نظر کارایی محاسباتی، نیازمند صرف هزینه و زمان محاسباتی زیادی باشد. دلیل این امر را می‌توان ماهیت حرکات تصادفی و تکاملی تدریجی الهام گرفته شده از طبیعت در الگوریتم GA دانست. در این پژوهش با هدف افزایش راندمان محاسباتی، استفاده از مدل‌های جایگزین در بخش فرایند بهینه‌سازی روش ITA پیشنهاد می‌شود. مدل جایگزین در واقع نمونه شبیه-سازی شده مدل اصلی بوده که قادر است مقدار تقریبی تابع هدف را در کسری از ثانیه محاسبه کند. نحوه به کارگیری این مدل‌ها در فرایند بهینه‌سازی در موفقیت استفاده از این روش‌ها تأثیر بسزایی دارد. در همین راستا دو الگوریتم دارای مدل جایگزین مبتنی بر اعضای جمعیت با عناوین Pre-selection Strategy (PS) وBest Strategy (BS) معرفی می‌شوند. به منظور ارزیابی و مقایسه نتایج، از یک شبکه آبرسانی با هدف یافتن پارامترهای نشت استفاده شده است. نتایج، افزایش راندمان محاسباتی را نسبت به استفاده از الگوریتم GA در روش ITA نشان دادند. الگوریتم PS توانست با کاهش 58% میزان تابع هدف و صرفه‌جویی زمان محاسباتی 78% نسبت به الگوریتم GA بهترین عملکرد را به خود اختصاص دهد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

شناسایی مدل دینامیکی هواپیما با استفاده از شبکه‌های عصبی مصنوعی

در این مقاله‌، روشی جهت شناسایی مدل دینامیکی هواپیما در حالت 6 درجه آزادی‌، با استفاده از شبکه‌ی عصبی ارائه می‌شود‌. برای مدلسازی با شبکه‌های عصبی‌، آگاهی قبلی نسبت به ویژگی‌های سیستم چندان مورد نیاز نیست و می‌توان با بکارگیری مجموعه‌ای از ورودی‌ها و خروجی‌های ثبت شده‌ی سیستم‌، عملیات شناسایی را انجام داد‌. لذا این شیوه برای هواپیما که تعیین مقادیر دقیق جرم‌، ممانهای اینرسی‌، مشتقات پایداری و ک...

full text

شناسایی دستکاری قیمت سهام از طریق مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی مصنوعی و مدل SQDF

هدف این پژوهش، شناسایی دستکاری قیمت سهام در بورس اوراق بهادار تهران می­باشد که از طریق مدل ترکیبی الگوریتم ژنتیک-شبکه عصبی مصنوعی (ANN-GA)[1] و مدل تابع تفکیکی درجه دوی تعدیل شده (SQDF)[2] انجام گرفته است. در این پژوهش از متغیرهای قیمت، حجم معاملات و سهام شناور آزاد برای تطبیق نتایج مدل و داده­های واقعی از دستکاری قیمت استفاده شده است. در مدل ترکیبی ابتدا داده­های مربوط به 316 شرکت از نخستین رو...

full text

پیش بینی فشار در شبکه های آبرسانی با استفاده از شبکه های عصبی مصنوعی و استنتاج فازی

فشار نقاط مصرف در شبکه های آب رسانی یکی از مهم ترین پارامترهای هیدرولیکی است که می تواند در مدیریت بهینه شبکه های توزیع آب مورد استفاده قرار گیرد. از آن جایی که فشار، اثرات متفاوتی بر پارامترهای مختلف مدیریت شبکه، همچون عملکرد هیدرولیکی، قابلیت اطمینان، پایداری شبکه و نشت دارد، لذا شناسایی روند تغییرات و تعیین میزان آن از اهمیت بسیاری در سطوح مختلف مدیریتی برخوردار است. بخش قابل توجهی از آب ورو...

full text

شناسایی مدل دینامیکی هواپیما با استفاده از شبکه های عصبی مصنوعی

در این مقاله ، روشی جهت شناسایی مدل دینامیکی هواپیما در حالت 6 درجه آزادی ، با استفاده از شبکه ی عصبی ارائه می شود . برای مدلسازی با شبکه های عصبی ، آگاهی قبلی نسبت به ویژگی های سیستم چندان مورد نیاز نیست و می توان با بکارگیری مجموعه ای از ورودی ها و خروجی های ثبت شده ی سیستم ، عملیات شناسایی را انجام داد . لذا این شیوه برای هواپیما که تعیین مقادیر دقیق جرم ، ممانهای اینرسی ، مشتقات پایداری و ک...

full text

پیش‌بینی فشار در شبکه‌های آبرسانی با استفاده از شبکه‌های عصبی مصنوعی و استنتاج فازی

فشار نقاط مصرف در شبکه‌های آب‌رسانی یکی از مهم‌ترین پارامترهای هیدرولیکی است که می‌تواند در مدیریت بهینه شبکه‌های توزیع آب مورد استفاده قرار گیرد. از آن‌جایی‌که فشار، اثرات متفاوتی بر پارامترهای مختلف مدیریت شبکه، همچون عملکرد هیدرولیکی، قابلیت اطمینان، پایداری شبکه و نشت دارد، لذا شناسایی روند تغییرات و تعیین میزان آن از اهمیت بسیاری در سطوح مختلف مدیریتی برخوردار است. بخش قابل توجهی از آب ورو...

full text

شناسایی خسارت در سازه با استفاده از پردازش سیگنال و شبکه های عصبی مصنوعی

در طول دو دهه اخیر بحث شناسایی خرابی و پایش سلامت سازه ها با هدف کاهش هزینه نگهداری و بهبود ایمنی و قابلیت اطمینان سازه مورد توجه قرار گرفته است. پس از وقوع زلزله با توجه به وضعیت بحرانی موجود و تعداد زیاد سازه های بلند مرتبه امکان مراجعه حضوری به تک تک سازه ها وجود ندارد. این موضوع اهمیت توسعه روش هایی که بتوانند تنها با استفاده از سیگنال های پاسخ ثبت شده در مدت زمان زلزله، خسارت ایجاد شده در ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 52  issue 10

pages  17- 17

publication date 2019-12-15

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023